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1 Introduction

A novel symmetry of the planar S-matrix of N = 4 supersymmetric Yang-Mills (SYM) —

dual superconformal symmetry — has been introduced in [1]. There, it was conjectured to

be an exact symmetry at tree level, but broken by quantum corrections, and an expression

for the anomaly associated to the dual conformal generators was proposed. A confirmation

of the conjecture was presented shortly after in [2], where it was demonstrated that the tree-

level S-matrix of N = 4 SYM transforms covariantly under the dual superconformal group.

Furthermore, it was shown in the same paper that the supercoefficients, which appear in the

expansion of planar, one-loop amplitudes in a basis of box functions, transform covariantly

under the symmetry, i.e. exactly in the same way as superamplitudes.

Dual conformal symmetry was first observed in the context of the duality between

MHV scattering amplitudes and Wilson loops [3–5]. Strong indications of this duality

were discovered in string theory in [3], where the calculation of scattering amplitudes at

strong coupling was mapped to that of a Wilson loop with a particular polygonal contour

which can be constructed by gluing together the null momenta of the scattered particles,

following the order of the insertions of the string vertex operators on the worldsheet. Quite

surprisingly, several calculations in perturbative N = 4 SYM, first at one [4, 5] and then

at two loops [6–9], showed that the same duality holds also at weak coupling, with perfect

agreement found between the perturbative Wilson loop and the MHV scattering amplitudes

of the N = 4 theory computed in [10–13]. The perturbative Wilson loop/amplitude duality

was recently studied in [14], where a numerical calculation of Wilson loops at two loops for

an arbitrary number of particles was presented.

At strong coupling, the emergence of dual superconformal symmetry was understood

in [15, 16] using a peculiar T-duality of the superstring theory on AdS5×S5, which combines
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bosonic [3] and fermionic T-duality transformations. The combined effect of these T-

dualities maps the original string sigma model into a dual sigma model identical to the

original one. More importantly, the T-duality also exchanges the original with the dual

superconformal symmetries.

At weak coupling, dual conformal symmetry emerged as the ordinary conformal sym-

metry of the Wilson loop, which acts in the conventional way on ’t Hooft’s region momenta

xi. These are defined via the relations pi,αα̇ = (xi − xi+1)αα̇, where i = 1, . . . , n, n is

the number of scattered particles, and the identification xn+1 = x1 enforces momentum

conservation. Dual conformal symmetry is broken by loop effects and the corresponding

anomalous Ward identity for the Wilson loop was derived in [6, 7]. In particular, it was

shown in [7] that the ABDK/BDS ansatz [13, 17] for the all-loop MHV amplitudes in

N = 4 SYM is a solution to this anomalous Ward identity.

The origin of the dual conformal anomaly at the quantum level can be traced to the

presence of cusps in the polygonal contour of the Wilson loop. For a smooth contour dual

conformal transformations would be an exact symmetry, however the cusps give rise to

short-distance singularities which need to be regularised, and, hence, generate an anomaly

in the dual conformal transformations at the loop level. These ultraviolet divergences are

mapped to the conventional infrared divergences of the scattering amplitudes [18–25], thus

suggesting an intimate link between infrared singularities and the dual conformal anomaly.

Inspired by the anomaly derived from the Wilson loop side and the duality with MHV

amplitudes, dual conformal symmetry was extended in [1] to dual superconformal sym-

metry, acting on superamplitudes [26] defined in a dual on-shell superspace. Moreover, it

was suggested that any superamplitude factorises naturally into the MHV superamplitude

and a dual superconformal invariant factor R as A = AMHV R. The MHV superamplitude

factor completely encapsulates the anomaly, which is therefore a universal quantity. This

remarkable conjecture was checked at one loop in [27] for the next-to-MHV (NMHV) su-

peramplitudes up to nine particles. Very recently in [28, 29] dual conformal covariance was

proved for one-loop NMHV superamplitudes with an arbitrary number of external particles.

The goal of this paper is to prove the dual conformal anomaly for generic (non-MHV)

one-loop superamplitudes in the N = 4 theory. In order to do so, we will build on the

results of [28], where the most generic expression for the dual conformal anomaly of all

N = 4 superamplitudes was derived using only the result that the superamplitude can

be expanded in terms of box functions [10]. The result of that calculation, reviewed in

section 2, was found to be the sum of two terms. The first one is precisely the one-loop

anomaly conjectured in [1]. Therefore, the additional term must vanish if the conjecture

of [1] is correct. This indeed happens for all MHV and NMHV superamplitudes, as was

proved in [28] by using the explicit forms of these amplitudes derived in [10] and in [27].

Moreover, a new set of equations for the one-loop supercoefficients of a generic non-MHV

amplitude were derived in [28] by assuming the vanishing of this additional term. In this

paper we will prove that this term does indeed vanish for generic superamplitudes, thus

providing a proof of the dual conformal anomaly conjectured in [1] at the one-loop level

and, consequently, of the conformal equations presented in [28].

As will be explained in section 2, this additional term is finite in four dimensions and
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can be written as a particular linear combination of two-mass triangle functions, which

depend on multi-particle as well as two-particle invariants. On the other hand, the dual

conformal anomaly of [1] diverges as 1/ǫ as ǫ → 0, and depends only on two-particle in-

variants through one-mass triangles. Note that we work here in dimensional regularisation

with D = 4 − 2ǫ. The different analytical structures of the two terms in the anomaly sug-

gest that it is sufficient to study the discontinuities of the anomaly in all possible kinematic

channels in order to prove that the additional term in the anomaly is in fact absent. Impor-

tantly, these discontinuities can be expressed in terms of appropriate phase space integrals.

In section 3 we will begin by calculating two-particle cuts of the one-loop anomaly for a

generic superamplitude which are associated to discontinuities in multi-particle channels.1

We will find that for any superamplitude these multi-particle discontinuities give rise to

finite phase space integrals multiplied by ǫ. Hence, all the multi-particle discontinuities of

the dual conformal variation of a superamplitude vanish in four dimensions. With this re-

sult we can rule out any additional terms to the anomaly conjectured in [1]. We emphasise

that our proof is general and applies to superamplitudes with arbitrary total helicity and

an arbitrary number of external particles.

We have mentioned earlier a potential link between the dual conformal anomaly and

infrared divergences. In section 4 we expose this connection further by considering two-

particle cuts of the anomaly in two-particle channels. Unlike the multi-particle disconti-

nuities discussed above, the two-particle discontinuities of the anomaly are non-zero and

finite in four dimensions. By uplifting the cut to a full loop diagram, akin to a proce-

dure introduced in [31] for the calculation of splitting amplitudes, we calculate its leading

infrared divergence, which in this case is of the order 1/ǫ. This turns out to reproduce

precisely the anomaly of [1].

Our treatment of the two-particle channels exposes the leading 1/ǫ2 infrared singularity

in this uplifted one-loop integral (which is further multiplied by one power of ǫ from an

anomalous Jacobian), and in principle could miss subleading 1/ǫ contributions to it; these,

in turn, would lead to finite, unwanted contributions to the anomaly. However, we will

argue that, thanks to the no-triangle and bubble property of one-loop amplitudes in N = 4

SYM [10], our approximation in fact captures all the infrared divergences of the above

mentioned loop integral. This result, together with the absence of discontinuities of the

anomaly in multi-particle channels, will provide us with a second (albeit intimately related)

proof of the dual conformal anomaly conjectured in [1].

This second proof has the virtue of making more manifest the connection of the dual

conformal anomaly of a generic scattering amplitude to its infrared divergences. We stress

that a crucial ingredient of both proofs is the maximal supersymmetry of the theory. In

the second proof, this enters directly through the no-triangle and bubble property of the

N = 4 amplitudes [10]; in the first proof, it enters through the specific form of the most

general anomaly, derived in [28].2

1This has been done in the recent paper [30] for MHV amplitudes.
2This form of the anomaly can itself be thought of as a non-trivial consequence of the no triangle and

bubble property.
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Figure 1. A generic box function. K1, K2, K3 and K4 denote the external momenta, and x1, x2, x3

and x4 the corresponding region momenta, with Ki = xi − xi+1, i = 1, . . . , 4.

2 Background

In this section we will first describe the structure of one-loop superamplitudes, and will

then discuss the general form of the dual conformal anomaly.

2.1 One-loop superamplitudes

Scattering amplitudes in N = 4 SYM with a fixed number of particles and total helicity are

naturally combined into superamplitudes [26]. These are defined in an on-shell superspace

where to each particle i one associates the momentum pi = λiλ̃i, as well as a fermionic

variables ηA
i , where A = 1, . . . , 4 is an SU(4) index. The superamplitude can then be

expanded in powers of the ηA
i ’s, and each term of this expansion corresponds to a particular

amplitude in N = 4 SYM with a fixed total helicity htot =
∑n

i=1 hi. A term containing mi

powers of ηi corresponds to a scattering process where the ith particle has helicity hi = 1−
mi/2. For instance, the MHV superamplitude is given by the following compact expression

AMHV = i (2π)4
δ(4)(P ) δ(8)(Λ)

〈12〉〈23〉 · · · 〈n1〉 , (2.1)

where P :=
∑n

i=1 λiλ̃i and Λ :=
∑n

i=1 ηiλi are the total momentum and supermomen-

tum, respectively.

One-loop amplitudes in the maximally supersymmetric N = 4 theory can be expanded

in a known basis of integrals which contains only box functions3 Fi, and no triangle or

bubble functions [10]. The functions Fi are related to the scalar box integrals Ii by a

kinematic prefactor as follows. We call K1,K2,K3 and K4 the external momenta at the

four corners of a given box function, which are expressed as sums of momenta pi of external

particles. The momenta K1...4 can also be written in terms of the region momenta x1...4,

e.g. K1 = x12, where xij := xi − xj (see figure 1). Then, up to a numerical constant, the

3We use a collective index i to denote the box function with external momenta K1...4.
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relation between the F ’s and the I’s is

Ii = −2
Fi√
Ri

,

Ri = (x2
13x

2
24)

2 − 2x2
13x

2
24x

2
12x

2
34 − 2x2

13x
2
24x

2
23x

2
41 + (x2

12x
2
34 − x2

23x
2
41)

2 . (2.2)

Four-mass boxes are special from the point of view of the dual conformal symmetry, as they

are infrared finite and invariant under the symmetry. We can then simplify the expression

for
√

R to √
R → x2

13x
2
24 − x2

23x
2
41 , (2.3)

valid for all box functions except four-mass ones in the case where either x2
12 or x2

34 vanish.

Notice that, under dual conformal inversions, one has

√

Ri →
√

Ri

x2
1x

2
2x

2
3x

2
4

. (2.4)

We expand a generic n-point one-loop superamplitude A1−loop
n in terms of box func-

tions [10] as

A1−loop
n =

∑

{i,j,k,l}

c(i, j, k, l)F (i, j, k, l) , (2.5)

where i, j, k, l, denote the four region momenta of the box function (as in figure 1, with

the labels 1, 2, 3, 4, replaced by i, j, k, l).

In [2] it was shown that the supercoefficients c(i, j, k, l) transform covariantly under

the symmetry. In order to deal with quantities which are invariant under dual confor-

mal transformations rather than covariant, it is convenient to redefine the dual conformal

generator Kµ as4 [32]

Kµ → K̂µ = Kµ − 2
n

∑

i=1

xµ
i . (2.6)

The covariance of the one-loop supercoefficients is then re-expressed as

K̂µc(i, j, k, l) = 0 . (2.7)

2.2 The structure of the anomaly

Dual conformal symmetry is violated at the quantum level by the presence of infrared

divergences. In [28], using the expansion (2.5) of a generic superamplitude in a basis

of boxes, together with the covariance of the one-loop supercoefficients (2.7), the dual

conformal anomaly of an arbitrary superamplitude was written as

K̂µA1−loop =
∑

{i,j,k,l}

c(i, j, k, l) KµF (i, j, k, l) . (2.8)

4We alert the reader that our definition for the special conformal generator Kµ differs from that used

in [7] by a factor of −1.
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After calculating the various box anomalies KµF (i, j, k, l), (2.8) takes the form [28]

K̂µA1−loop
n = 4ǫAtree

n

n
∑

i=1

xµ
i−1 x2

ii−2 J(x2
ii−2) (2.9)

− 2ǫ

n
∑

i=1

i+n−3
∑

k=i+2

E(i, k)
[

xµ
i−1 x2

ik − xµ
i x2

i−1 k

]

J(x2
ik, x

2
i−1 k) ,

where

E(i, k) :=
i+n−2
∑

j=k+1

c(i, k, j, i − 1) −
k−1
∑

j=i+1

c(i, j, k, i − 1) , (2.10)

is a particular combination of supercoefficients. Furthermore, (2.10) is valid for i < k; if

i > k, then the variable k appearing in the summation ranges of (2.10) has to be replaced

by k + n. We have also introduced one-mass and two-mass triangle functions, defined as

J(a) :=
rΓ

ǫ2
(−a)−ǫ−1 , (2.11)

J(a, b) :=
rΓ

ǫ2

(−a)−ǫ − (−b)−ǫ

(−a) − (−b)
, (2.12)

respectively, where rΓ := Γ(1 + ǫ)Γ2(1 − ǫ)/Γ(1 − 2ǫ).

Equation (2.9) gives the most general expression for the anomaly of a one-loop super-

amplitude in N = 4 SYM with an arbitrary total helicity. In order to set the scene for our

proof, let us now highlight the main characteristics of (2.9).

To begin with, the first term of (2.9) precisely matches the anomaly conjectured in [1].

Furthermore, it contains only one-mass triangles whose arguments are two-particle invari-

ants. These triangles, multiplied by ǫ, give rise to terms which diverge as 1/ǫ as ǫ → 0.

On the other hand, the second line of (2.9) contains two-mass triangles whose argu-

ments can be two- or multi-particle invariants. In general, there is no two-mass triangle

that has only two-particle invariants, except at five points, where amplitudes are only MHV

or anti-MHV. This specific case has already been addressed explicitly in [1, 28] where it

was shown that the anomaly of [1] is correctly reproduced.

The presence of multi-particle invariants in the second line of (2.9) is its key signature,

and in the next section we will use the analyticity properties of this expression to prove that,

in fact, this term identically vanishes. As a byproduct, this implies the conformal equations

E(i, k) = 0 , i = 1, . . . , n , k = i + 2, . . . , i + n − 3 , (2.13)

relating box coefficients, where E(i, k) are given in (2.10). These relations were conjectured

in [28] to hold for any superamplitude, and checked explicitly for the infinite sequences of

MHV and NMHV superamplitudes. They can be solved to give expressions for all one-mass,

two-mass easy and half of the two-mass hard box coefficients in terms of the remaining

box coefficients.

– 6 –



J
H
E
P
1
0
(
2
0
0
9
)
0
6
3

3 The first proof

We perform the proof of the one loop dual conformal anomaly in two steps:

1. We will calculate the discontinuities of the anomaly using conventional unitarity [33],

and prove that for multi-particle channels, the result for the discontinuity is given by ǫ

times an integral which is finite in four dimensions. The result for such a discontinuity

therefore vanishes in four dimensions.

2. We will calculate the discontinuity of the anomaly in a multi-particle channel directly

from (2.9), and impose that this vanishes. This precisely implies the dual conformal

equations (2.13) and therefore proves the form of the anomaly conjectured in [1] for

all one-loop superamplitudes in the N=4 theory,

K̂µA1−loop
n = 4ǫAtree

n

n
∑

i=1

xµ
i−1 x2

ii−2 J(x2
ii−2) . (3.1)

We now proceed directly to the proof.

1. Consider the discontinuity of the superamplitude in a certain multi-particle channel

P 2
L. We wish to show that this is conformally invariant (this is not true for the

two-particle channel — such cuts will be considered in the following section). The

corresponding cut diagram is represented in figure 2, and is expressed by the following

phase space integral:
∫

dµi,...,j AL(l2, l1, i, . . . , j)AR(−l1,−l2, j + 1, . . . , i − 1) . (3.2)

The integration measure is defined as

dµi,...,j = dLIPS(l2, l1;PL) d4ηl1d
4ηl2δ

(8)(ηl1λl1 + ηl2λl2 + ΛL) , (3.3)

where

dLIPS(l2, l1;PL) = dDl1d
Dl2 δ(+)(l21) δ(+)(l22) δ(D)(l1 + l2 + PL) , (3.4)

is the phase space measure, and d4ηl1d
4ηl2δ

(8)(ηl1λl1 + ηl2λl2 + ΛL) is the fermionic

integration measure. We have defined

PL =

j
∑

k=i

λkλ̃k , ΛL =

j
∑

k=i

ηkλk , (3.5)

to be the total momenta and supermomenta flowing out of the left hand side of the

cut diagram. In (3.2) we are omitting overall delta functions imposing momentum

and supermomentum conservation.

In the appendix we compute the dual conformal transformation of the discontinuity

in the x2
i j+1 channel, with the result

discx2
i j+1

[

K̂µA1−loop
n

]

=2(4−D)

∫

dDy δ(+)
(

(y−xi)
2
)

δ(+)
(

(xj+1−y)2
)

[

yµ 〈l1l2〉4ALAR

]

.

(3.6)
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Figure 2. A cut diagram reproducing the discontinuity of the anomaly for a generic superamplitude

in a kinematic channel x2
i j+1. When x2

i j+1 is a multi-particle invariant, the phase space integral

corresponding to this cut diagram is finite, and vanishes in four dimensions due to the factor of

D − 4 on the right hand side of (3.6).

In order to understand whether (3.6) leads to a contribution to the anomaly, we

analyse the singularities of the integral in that equation. To this end, we first consider

the phase space integral giving the discontinuity of the superamplitude in the same

channel x2
i j+1. This is given by

discx2
i j+1

A1−loop
n =

∫

dDy δ(+)
(

(y − xi)
2
)

δ(+)
(

(xj+1 − y)2
)

[

〈l1l2〉4ALAR

]

. (3.7)

As is well known, there is a crucial distinction in the infrared properties of (3.7)

between the cases when the channel is a multi-particle or a two-particle one. When

x2
i j+1 is a multi-particle channel, the integral appearing on the right hand side of (3.7)

is free of infrared divergences and hence can be calculated in four dimensions, see [34]

and [31] for a discussion of this point.5 This is of course in agreement with the general

expression of the infrared divergences of one-loop amplitudes in N = 4 SYM, given

by [35]

A1−loop
n |IR = −rΓ Atree

n

n
∑

i=1

(−x2
ii+2)

−ǫ

ǫ2
, (3.8)

which only contain two-particle invariants formed with adjacent momenta (but no

multi-particle invariant).

We now make the observation that the integral we are really interested in, namely

that on the right hand side of (3.6) is very similar to the integral appearing in (3.7).

More precisely, (3.6) contains an extra power of 2(D − 4) and a yµ in the integrand

compared to (3.7). The presence in (3.6) of y = xj+1 − l1 by itself cannot lead to

any infrared singularity (the term containing l1 will only give rise to terms which are

better behaved in the infrared). Since (3.7) is infrared finite, we conclude that the

5For the sake of this first proof, we are only interested in multi-particle channels, as discussed above.

We will later on discuss the two-particle channel discontinuities, to show how the anomaly arises precisely

from such singular channels.
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presence of a factor of D − 4 multiplying the discontinuity of the anomaly (3.6) will

make the result vanish. Hence, for a generic multi-particle channel x2
i j+1,

discx2
i j+1

[

K̂µA1−loop
n

]

= 0 , j 6= i + 1 . (3.9)

This concludes the first part of the proof. Notice that (3.9) is in agreement with [30],

where it was observed that the discontinuities of the one-loop MHV amplitude in

multi-particle channels, calculated in [34], are dual conformal invariant. Our re-

sult (3.9) is however completely general, in that it applies to all one-loop amplitudes,

including non-MHV.

2. We now wish to use the absence of conformal anomalies in the multi-particle cut (3.9)

to constrain the expression (2.9). More precisely, we will use the fact that in each of

the n(n − 5)/2 multi-particle channels the discontinuity of the anomaly vanishes in

order to prove the conformal equations (2.13), and hence the form of the conformal

anomaly for generic amplitudes.

To this end, we focus on the terms on the right hand side of (2.9) which have a

discontinuity in a certain multi-particle channel x2
ik. There are four such terms:

K̂µA1−loop
n ∋ −2ǫ E(i, k)

[

xµ
i−1 x2

ik − xµ
i x2

i−1 k

]

J(x2
ik, x

2
i−1 k)

−2ǫ E(i + 1, k)
[

xµ
i x2

i+1 k − xµ
i+1 x2

ik

]

J(x2
i+1 k, x

2
ik)

−2ǫ E(k, i)
[

xµ
k−1 x2

ik − xµ
k x2

k−1 i

]

J(x2
ik, x

2
k−1 i) (3.10)

−2ǫ E(k + 1, i)
[

xµ
k x2

k+1 i − xµ
k+1 x2

ik

]

J(x2
k+1 i, x

2
ik) .

The last two lines are obtained from the first two by simply exchanging i with k. The

discontinuity of a triangle function is given by

discb

[

ǫ J(a, b)
]

=
2πi

b − a
+ O(ǫ) , (3.11)

therefore

discx2
ik

[

KµA1−loop
n

]

= 2πi

[

E(i, k)
xµ

i−1 x2
ik − xµ

i x2
i−1 k

x2
ik − x2

i−1 k

+ E(i + 1, k)
xµ

i x2
i+1k − xµ

i+1 x2
ik

x2
ik − x2

i+1 k

+ E(k, i)
xµ

k−1 x2
ik − xµ

k x2
k−1 i

x2
ik − x2

k−1 i

+ E(k + 1, i)
xµ

k x2
k+1 i − xµ

k+1 x2
ik

x2
ik − x2

k+1 i

]

= 0 , (3.12)

where in the last step we have used (3.9).

Equation (3.12) is a vector equation, which we can rewrite as

E(i, k)vµ
ik + E(i + 1, k)vµ

i+1k + E(k, i)vµ
ki + E(k + 1, i)vµ

k+1i = 0 , (3.13)
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where

vµ
ik :=

xµ
i−1 x2

ik − xµ
i x2

i−1 k

x2
ik − x2

i−1 k

, (3.14)

and we remark that the four vectors vµ
ik, vµ

i−1k, vµ
ki and vµ

k−1i are in general linearly

independent in four dimensions. Hence we conclude that the coefficients E(i, k),

E(k, i), E(i + 1, k), E(k + 1, i) must vanish independently.

This proves the conformal equations (2.13), and therefore we conclude that the dual

conformal anomaly for an arbitrary (non-MHV) amplitude is given by (3.1).

This completes our proof. We conclude this section with a couple of addi-

tional comments.

First, we have managed to prove n(n−4) conformal equations E(i, k)=0 in (2.13) from

considering just n(n − 5)/2 multi-particle cuts of the amplitude. We can do this since

each multiparticle cut anomaly is a vectorial equation and hence gives four independent

conditions, thus we really obtain 2n(n − 5) (dependent) conditions. These are precisely

the conditions (3.13). Each multiparticle cut x2
ik leads to the condition E(i, k) = 0 and

E(k, i) = 0. This leaves only the ‘boundary case’ E(i, i + 2) = 0 potentially unaccounted

for. Fortunately (3.13) also gives E(i + 1, k) = 0 which for k = i + 3 gives us precisely this

boundary case with the (arbitrary) label i shifted to i + 1.

Second, we mention an important point which could have affected our proof. It has

been recently pointed out in [30, 36] that some of the dual superconformal generators do

not precisely annihilate the superamplitude but leave behind a delta-function supported

contribution of the type of a holomorphic anomaly [37]. It is important for our proof that

there is no holomorphic anomaly for the special conformal generator Kµ we are interested

in. Indeed, had Kµ acting on the tree-level amplitudes AL or AR in (3.7) produced delta-

function contributions, the phase space integration in (3.7) would be localised, and new,

unwanted contributions to the dual conformal anomaly would be generated.

Fortunately, the absence of holomorphic anomaly contributions to the dual special

conformal generator Kµ has been shown for all tree-level amplitudes in [36], and specifically

for MHV superamplitudes and six-point NMHV tree-level superamplitudes in [30]. We

recall that the holomorphic anomaly arises from

∂

∂λ̃α̇

1

〈λµ〉 = 2πµ̃α̇ δ(〈λµ〉) δ([λ̃µ̃]) . (3.15)

In order to get a contribution from holomorphic anomalies which would lead to a locali-

sation of the phase space integral in (3.7), one should then identify all possible physical

singularities in the scattering amplitude of the type 1/〈lk〉, where l is any one of the cut

loop momenta, and k one of the legs which are adjacent to it.6 At tree level, such singular-

ities arise only from collinear kinematics, and in [30] it has been shown that in the action

6We consider colour-ordered amplitudes, hence such singularities can only involve particles that are

adjacent in colour space.
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Figure 3. The cut diagram reproducing the discontinuity of the anomaly for a generic superam-

plitude in the two-particle channel sii+1 = x2
ii+2. In this case the superamplitude on the left hand

side has four particles and, hence, must be a MHV superamplitude. This diagram has an infrared

divergence arising from the region of integration where l1 ∼ −pi and l2 ∼ −pi+1. In this region we

also have that y ∼ xi+1 where y is the region momentum between the two cut legs.

of Kαα̇ on 1/〈ii+1〉, the holomorphic anomaly contributions cancel. Therefore, the special

conformal generator is not affected by holomorphic anomalies.7

4 Unearthing the anomaly with two-particle cuts

To complete our discussion, we now address the two-particle channel cuts of the conformal

variation of the amplitudes in more detail. This will reveal the close relation between

infrared divergences of the amplitude and the dual conformal anomaly. For concreteness

let us consider the two-particle channel cut of a generic one-loop amplitude represented in

figure 3. This cut gives rise to the following phase space integral,

discx2
ii+2

A1−loop
n =

∫

dµii+1 AMHV(i, i + 1, l2, l1)AR(−l1,−l2, i + 2, . . . , i − 1) , (4.1)

while the corresponding cut diagram of the dual conformal anomaly is given by

discx2
i i+2

[

KµA1−loop
n

]

= 4ǫ

∫

dµii+1

[

yµAMHV(i, i + 1, l2, l1)AR(−l1,−l2, i + 2, . . . , i − 1)
]

,

(4.2)

where the integration measure appearing in both expressions is defined in (3.3).

The phase space integrals appearing in (4.1) and (4.2) are both infrared divergent. The

divergence arises from a region where l1 becomes collinear to pi and l2 becomes collinear

to pi+1 at the same time [31]. This occurrence of simultaneous collinear singularities is

special to two-particle cuts and is necessary to produce the expected infrared divergences.

For generic kinematics, i.e. if pi and pi+1 are not collinear, momentum conservation of the

four-point MHV amplitude implies that the singular region of the momentum integral is

confined to

l1 → −pi, l2 → −pi+1 . (4.3)

7Unlike the dual special conformal generator, the dual supersymmetry generator Q̄ does suffer from a

holomorphic anomaly [30].
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In this singular region of loop momentum space, the region momentum y localises on the

region momentum xi+1, which will be of importance in the following.

In the following we will show that the exact one-loop anomaly and the infrared di-

vergent part of the amplitude can be extracted by using an approximation which focuses

exactly on this peculiar loop momentum region. A couple of explanations are in order here:

• We observe that the leading infrared singularity of both integrals is correctly cap-

tured by replacing −l1 and −l2 in the tree-level superamplitude AR by pi and pi+1,

respectively. Importantly, this allows us to pull AR out in front of the integrals (4.1)

and (4.2). Note that this tree-level superamplitude has the same total helicity as the

one-loop amplitude under consideration. Furthermore, in the integrand of (4.2) we

can replace y with xi+1 and factor it out of the integral as well. This factorisation

property of the leading infrared singularity is illustrated in figure 4.

• We know from (3.9) in the previous section that the anomaly does not have discon-

tinuities in multi-particle channels and, hence, it can only depend on two-particle

invariants.

• Our approximation of the cut integrals (4.1) and (4.2) removes all dependence on

momentum invariants other than the two-particle invariant x2
ii+2. This allows us to

directly uplift the cut integrals to full loop integrals, i.e. replace the two on-shell

δ-functions in the cut by propagators, very much as was done in [31] for splitting

amplitudes.

• The remaining issue is to rule out any subleading infrared terms that our approx-

imation might miss. For the amplitudes, this is easily settled by recalling that in

N = 4 SYM all one-loop amplitudes are linear combinations of box functions and

that all potentially infrared divergent terms are expressed in terms of one-mass trian-

gle functions with a two-particle invariant argument, which behave as (−x2
ii+2)

−ǫ/ǫ2.

Indeed, after uplifting the cut integral, one obtains one-mass triangle integrals with

the expected coefficient. If we now apply dual special conformal transformation on

our integrand, one power of the loop momentum appears in the numerator. Uplifting

then gives rise to linear box functions, which can be reduced to scalar boxes and tri-

angles. The result consists of finite terms and terms that are of the form (−s)−ǫ/ǫ2 or

(−t)−ǫ/ǫ2 for two- (multi-)particle invariants s (t). Crucially, there are no sublead-

ing 1/ǫ terms, i.e. bubble functions. Since the dual conformal transformation comes

with a factor of ǫ, only one-mass triangles with two-particle invariants survive. So

in essence the no-bubble and no-triangle property of one-loop amplitudes in N = 4

SYM ensures that our procedure is valid.8

8For the precise form of the reduced linear boxes see (2.9). However in this section we wish to give

general arguments without referring to this formula for the generic anomaly.
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Figure 4. Graphic representation of the factorised structure of the two-particle channel disconti-

nuities of the amplitude and of the anomaly in (4.4) and (4.5).

After these comments we proceed now to the explicit evaluation of the two-particle

cut integrals (4.1) and (4.2). For the infrared divergent part of the amplitude we find

[

A1−loop
n

]

x2
ii+2

−cut

∣

∣

∣

∣

IR

= Atree
n

∫

dDy

(2π)D

[ 〈l1l2〉4 AMHV(i, i + 1, l2, l1)

(xi − y)2(xi+2 − y)2

]

x2
ii+2

−cut

, (4.4)

= Atree
n

∫

dDy

(2π)D

[

x2
i i+2

(xi − y)2(xi+1 − y)2(xi+2 − y)2

]

x2
ii+2

−cut

,

where we have performed some spinor algebra and used (4.3) to simplify the numerator of

the integrand to obtain the second line. We arrive at an expression that is proportional

to a scalar one-mass triangle. Similarly, for the dual conformal anomaly of the amplitude

we obtain
[

KµA1−loop
n

]

x2
ii+2

−cut
= 4ǫ xµ

i+1Atree
n

∫

dDy

(2π)D

[ 〈l1l2〉4 AMHV(i, i + 1, l2, l1)

(xi+2 − y)2(xi − y)2

]

x2
ii+2

−cut

(4.5)

= 4ǫ xµ
i+1Atree

n

∫

dDy

(2π)D

[

x2
i i+2

(xi − y)2(xi+1 − y)2(xi+2 − y)2

]

x2
ii+2

−cut

.

We notice that these two relations establish a link between the universal infrared behaviour

of the amplitudes and the dual conformal anomaly, since these imply that

[

KµA1−loop
n

]

x2
ii+2

−cut
=4ǫ xµ

i+1

[

A1−loop
n

]

x2
ii+2

−cut

∣

∣

∣

∣

IR

.

The expression (4.4) can be freely uplifted and summed over all two-particle channels

(recalling that all multi-particle cuts vanish) to give us directly the well known expression

for the infrared divergent part of the amplitude (3.8). Similarly, (4.5) gives directly

KµA1−loop
n = 4ǫAtree

n

n
∑

i=1

xµ
i+1 x2

ii+2 J(x2
ii+2) . (4.6)

The right hand side of (4.6) is nothing but the dual conformal anomaly. We have thus

managed to link this anomaly to infrared-divergent two-particle channel cut diagrams. This

provides a derivation of the form of the anomaly which exposes in a very direct manner

the exact coefficient of the anomaly.
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A Conformal transformation of a cut diagram

We now consider the conformal variation of the discontinuity integral. This is given by the

following expression,
∫

dµ′
i,...,j AL(l′2, l

′
1, i

′, . . . , j′)AR(−l′1,−l′2, (j + 1)′, . . . , (i − 1)′) , (A.1)

where the prime means that the momenta have been replaced by their conformally varied

expressions (we also freely replace the loop momenta and the measure by conformally varied

expressions). We recall that momenta are written as differences of region momenta as

pi = xi − xi+1 , (A.2)

and that under an infinitesimal special conformal transformation one has

Kνxµ := ηµνx2 − 2xµxν . (A.3)

In spinor notation, (A.3) becomes

Kββ̇xαα̇
i = −2xαβ̇

i xβα̇
i , (A.4)

and one can easily check that the transformations

Kββ̇λα
i = −2

(

xαβ̇
i λβ

i − µiλ
α
i λβ

i λ̃β̇
i

)

, (A.5)

Kββ̇λ̃α̇
i = −2

(

xα̇β
i λ̃β̇

i − (1 − µi)λ̃
α̇
i λ̃β̇

i λβ
i

)

, (A.6)

are consistent with this (consider Kββ̇(λα
i λ̃α̇

i ) = Kββ̇xαα̇
i i+1). The standard choice of spinor

transformation [1] is obtained by simply setting µi = 0. We will have to consider these

general transformations involving the free parameter µi in order to correctly cope with the

transformation of the spinors associated with the loop momenta.

We have

Kµx2
ii+2 = −2(xµ

i + xµ
i+2)x

2
ii+2 , (A.7)

and

Kµ〈ii + 1〉 = −2
[

xµ
i (1 − µi) + xµ

i+1(µi − µi+1) + xµ
i+2µi+1

]

〈ii + 1〉 , (A.8)

Kµ[ii + 1] = −2
[

xµ
i µi + xµ

i+1(−µi + µi+1) + xµ
i+2(1 − µi+1)

]

[ii + 1] . (A.9)
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After performing the fermionic integrations and one of the two momentum integrations, as

well as a shift in the integration variable to y = l1 + xi, the cut superamplitude becomes
∫

dDy δ(+)(l21) δ(+)(l22) 〈l1l2〉4ALAR , (A.10)

where l1 = λl1 λ̃l1 = y − xi and l2 = λl2 λ̃l2 = xj+1 − y.

The transformations of the various components of the cut diagram read as follows,

KAL(l2, l1, i, . . . , j)

= 2

[

j
∑

a=i+1

xa(1 − 2µa + 2µa−1) + xj+1(1 − 2µl2 + 2µj)

+ y(1 − 2µl1 + 2µl2) + xi(1 − 2µi + 2µl1)

]

AL(l2, l1, i, . . . , j) , (A.11)

and

KAR(−l1,−l2, j + 1, . . . , i − 1)

= 2

[

i−1
∑

b=j+2

xb(1 − 2µb + 2µb−1) + xi(1 − 2µ′
l1

+ 2µi−1) (A.12)

+y(1 − 2µ′
l2

+ 2µ′
l1
) + xj+1(1 − 2µj+1 + 2µ′

l2
)

]

AR(−l1,−l2, j + 1, . . . , i − 1) .

Furthermore, one has

K δ(+)(l21) = 2(xi + y) δ(+)(l21) , (A.13)

K δ(+)(l22) = 2(xj+1 + y) δ(+)(l22) , (A.14)

K dDy = −2D y dDy . (A.15)

Here the µ′ parameters are defined as µ′
l1

:= 1 − µl1 and µ′
l2

:= 1 − µl2, accounting for

the fact that, in AR, l1 and l2 are in the reverse cyclic ordering to AL. The covariance

of all tree-level amplitudes under conformal transformations was proved in [2] and indeed

covariance under the more general transformations defined here was also proven there.

Putting all this together we get that the cut amplitude transforms with weight

2

n
∑

a=1

xµ
a(1 − 2µa + 2µa−1) + 2(4 − D)yµ . (A.16)

The first term is the expected covariant term, whereas the second is the contribution to

the one-loop dual conformal anomaly quoted in (3.6).
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